Objectives:

Using the **CONIC PLOTTER** aplet, the student will investigate the conic sections in general and in standard form.

Functionality:

When the student presses **START**, the **CONIC PLOTTER NOTE** will be displayed.

After reading the note, the student should press **SKETCH** for further information.

VIEWS allows the student to investigate the general form of a conic, or the standard form of a circle, parabola, ellipse, or hyperbola.

General Form prompt the student to enter values for the coefficients and constant of a conic in the general form: $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$.

In the example to the right, A=-1, B=2, C=1, D=0, E=0, and F=-1.

After the series of input forms, the corresponding graph will be displayed.

See Equation in the **VIEWS** menu will display the general form of the conic that has been graphed.

Ellipse will prompt the student to select the direction of the major axis.

The standard form of the conic will then be displayed.

Enter Values will prompt the student to enter the necessary values.

Exploring Conic Sections

For the Teacher -- page 2

After the series of input forms, the corresponding graph will be displayed.

See Equation in the **VIEWS** menu will display the general form of the conic that has been graphed.

$$\frac{(X-1)^2}{4} + \frac{Y^2}{9} = 1$$

Programs associated with this aplet:

.CON.EV, .CON.CIR, .CON.PAR, .CON.ELL, .CON.HYP, .CON.SF, .CON.ST, .CON.SV

1.

$$y = \frac{1}{2}(x-3)^2 + 2$$

2.

$$x = 2(y-1)^2 - 2$$

vertex:

axis of symmetry:

vertex:

axis of symmetry:

II. Graph. Identify the center and the radius of each circle.

3.

$$x^2 + y^2 = 36$$

4.

$$(x-2)^2 + (y+1)^2 = 25$$

center:

radius:

center:

radius:

III. Graph. Find the center and the endpoints of the major and minor axes of each ellipse.

5.

$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

6.

$$\frac{x^2}{25} + \frac{y^2}{16} = 1$$

center:

major:

minor:

center:

major:

minor:

$$\frac{(x+1)^2}{36} + \frac{y^2}{4} = 1$$

$$x^2 + 4y^2 = 16$$

center:

major:

minor:

center:

major:

minor:

VI. Graph. Find the center and the vertices of each hyperbola.

9.

$$\frac{x^2}{4} - \frac{y^2}{16} = 1$$

10.

$$\frac{x^2}{25} - \frac{y^2}{9} = 1$$

center:

vertices:

center:

vertices:

11.

$$(x-1)^2 - \frac{y^2}{4} = 1$$

12.

$$4x^2 - 25y^2 = 100$$

center:

vertices:

center:

vertices:

٧. Identify each of the following as a circle, ellipse, hyperbola, or parabola.

$$_{---}$$
 13. $9x^2 - 25y^2 = 1$

$$25v^2 = 1$$

____ 14.
$$x^2 + 2x - y = 3$$

$$_{---}$$
 15. $x^2 + 2y^2 + 2y = 18$

____ 16.
$$x^2 + 3x + y^2 - 2y = 15$$

Exploring Conic Sections Name General Form Date

- I. Identify each conic. Rewrite in standard form and graph.
- 1. $9x^2 25y^2 = 1$
- 3.
- $x^2 + 2x y = 3$

type: Standard

Form:

type: Standard Form:

2. $4x^2 + 2y^2 + 2y = 14$

type: Standard Form:

II. Write an equation for each of the following.

5.

6.

7.

8.

