Eg. Find the complex solutions to the complex equation $f(z)=z^{2}+z+1$

Result: Since this is a quadratic it can be done with the QUAD formula mentioned in example 1, since it is capable of giving complex results. This is shown above, rounded to 4 dec. pts. It's up to you of course to realize that $(0,1.7321)$ is $\sqrt{3} i$ but if you don't recognize it then copy just that portion and square it. The 'S1' means \pm. An alternative method is to use the POLYROOT function and store the results to a matrix. This offers the advantage of being able to examine the result more easily by EDT ing the matrix, and also of being able to access each root by referring to the matrix elements in a calculation (eg M1(1), M1(2) etc.).

