Tips and Tricks: Complex Roots

The POLYROOT function can be used to find the roots of complex polynomials, with the results being stored as complex vectors.

For example, suppose we want to find the complex cube roots of -8 . Simply re-arrange $z^{3}=-8$ into $z^{3}+0 z^{2}+0 z+8=0$ and then use POLYROOT in HOME, storing the result into M1.

Don't forget that the coefficients in POLYROOT must be enclosed in square brackets.

Storing into a matrix allows us not only to view the results more easily, but also to access individual results in HOME as shown right.

Those who would like a more sophisticated approach might like to try the program shown right. It is available in the G\&T and Calculus sections of the Archive CD.

It asks which root you want to find of which complex number and then displays the results as a vector in $\mathbf{M 9}$, in r cis theta form, and as an argand diagram.

Note that it expects that a pair of blank axes have been plotted first for use as a template in the argand diagram. Just go to the Function aplet, unCHK any functions you don't want to lose and PLOT. Then run this program.

```
ERASE :
    INPUT R; "Nth ROOT"; "N"; "Enter no. "; R:
    INPUT ZQ;R"th roots of what?"; "ND"; ""; ZD:
    HFormatPF: HDigitsFD:
    2FHFormat: 3FHDigits:
[(1, G)]PMG:
REDIM ME; {R+1}:
-Z目MG(R+1) =
POLYROOT (H19PF19:
EDITHRT II9:
ERHSE:
DISP 1; "Roots":
DISP F; "Press any key":
FOR I=1 TO R STEP 1:
    DISP 3:RE(H9(I) )" + "IMCH9(I))"i":
    DISP 5; RBS(M9(I)\" cis "RRG(H9(I)\:
    FREEZE:
END:
1*PageNum=
PLOT; Page:
`DISPLAY Page:
FOR I=1 TO R STEP 1;
    TLINE A; 6; RE(H9(IJ); IM(H9(I) ) =
END:
FFHFormat : DPHDigits:
FREEZE :
```


ERASE:

INPUT ZG;R"th roots of what?"; "ND"; ""; ZG: HFormat PF: HDigitsp:
2FHFormat: 3FHDigits:
$[(1, G)] P M B=$
REDIM ME; \{R+1\} :
$-201-\operatorname{Ha}(R+1)=$
POLYROOT MGOPM9:
EDITM:
ERASE:
DISP 1; "Roots":
DISP ri "Press any key":

FREEZE:
END:
Pagenum:
PLOT ${ }^{\text {Page: }}$
ORGL Page:

END:
FREEZE :

