Composite functions

The Function aplet is capable of dealing with composite functions such as $f(x+2)$ or $f(g(x))$ in its SYMB view. The ETFIL and EHDD

For example, if we define $F 1(x)=x^{2}-1$ and $F 2(x)=\sqrt{x}$, then we can use these in our defining of $\mathrm{F} 3(\mathrm{X}), \mathrm{F} 4(\mathrm{X})$. See the screen shot on the left below.

If the highlight is now positioned on each of these in turn, and the ETiL key pressed then the substitution is performed. The result is shown in the right hand snapshot.

Notice that the calculator is smart enough to realize in $F 3(X)$ that $(\sqrt{x})^{2}-1$ is the same as $x-1$, although not, unfortunately, smart enough to keep track of the implications for the domain, which are that $\mathrm{F} 3(\mathrm{X})$ should be defined only for non-negative x.

There is a limit to this however. If you define $F 1(x)=x^{2}-x-1$ and then $F 2(x)=F 1(x+1)$, then the EWFiL routine will not simplify $(x+1)^{2}-(x+1)-1$ to $x^{2}+x-1$.

On the other hand there is a way to further simplify the expression. EDITT the result and enclose it with the POLYFORM function as shown right, adding a final ',x ' as shown, then highlight it and press ETiL. The calculator will expand the brackets and gather terms.

Evaluating the function may also hide the domain and for this reason it is sometimes best to leave the evaluation undone.

For example, if $F 1(X)=X^{2}$ and $F 2(X)=\sqrt{X}$ then $F 3(X)=F 1(F 2(X))$ will show the correct domain of $x \geq 0$ for both

X	F1	F2	F3
-	\%		
-	01	ukue.	
:1	\%1	4472 ${ }^{\text {¢ }}$	12
-. 3			
EITMN		\|EIT	LEFN

