
Enjoy reading the February issue of the HP-39/40g newsletter!

In this issue we will talk about:
1. Letter from the editor
2. Program of the month
3. Upcoming programs
4. Interview with NODA
5. Michaël’s cosy programmers corner

Letter from the editor.
Making resolutions is one thing. Keeping them is another ☺. You’ve probably noticed that this newsletter is
again late. But when making it I didn’t thought that there was going to be so much information this month ☺.
This edition is packed, packed!! We have new upcoming programs, an interview with NODA (some new
questions asked) and we learn everything about lists. The program of the month is super duper and the lay-out of
this newsletter is changed a little bit again. But enough talk from me... Let’s read the HPMN.

Sincerely, your editor, Michaël

Program of the month.

This month the winner is ‘NoteMaker’! The maker itself says that it is the program where people have been
asking for. And I have to admit, I didn’t ask for it, but I’m sure glad that it’s here ☺. I think that everybody
who owns a HP-39/40g, made at least once in his life a note with it. Small notes you can do easily on your
calculator. However for long notes the HP-39/40g’s keyboard, like any calculator keyboard, is not ideal. With
this great program you can just do it on your computer. However notice that you must have java 2.0 or higher to
run it. With this said the only disadvantage is also mentioned. For the rest it does what it should do and it comes
in cool package. What more do you ask for? Nothing, I thought so…

Specs:
System: HP 39(+)/40g.
Author: Joshua King
Download where: http://www.geocities.com/jking_ok/notemaker/notemaker060.zip
Site of the maker: http://www.geocities.com/jking_ok/index.html

Upcoming programs.
Well someone from the French community tries to convert the Mig player to the HP-39/40g. Mig is a program
that enables you to play polyphonic sounds on your calculator. There was already a beta version ‘released’. But
unfortunately it didn’t work well (you couldn’t hear anything ☺). Because the person who converts it doesn’t
have a HP-39/40g I think you shouldn’t get your hopes up too high.

On the other hand Alan Lark gave me a note that he was working on HP Piano X. This time it supports Sys-rpl
format! And he’s also trying to implement real-time recording. I think it’s very cool that my favourite tool
when programming gets an update. I’m so happy ☺.

The French community is looking for people who want to make a game based on a game on the internet. The
game is a puzzle game with pipes (the link is: http://www.telescope-game.com, you can play the game even off-
line if you want). If you are interested in making it or just want to know in what state the game is go to forum of
HP-Network: http://www.hp-network.com/forum/list.php?f=1. Look for (RE:) Un jeu super cool… sur HP???.
Like you could guess the website is in French.

http://www.geocities.com/jking_ok/notemaker/notemaker060.zip
http://www.geocities.com/jking_ok/index.html
http://www.telescope-game.com/
http://www.hp-network.com/forum/list.php?f=1

If you don’t want to make a whole game or just think that this game sucks, but you are still in an Assembly/Sys-
rpl programming mood then there are other options for you. NODA has a lot of unreleased games that still have
bugs in them but shouldn’t be that hard to solve them. Those games are:

" Master of the grass (a bug when one quits)
" Novanoid (key of the sound that doesn’t work)
" SuperCar (bug when you quit playing)
" Defusing (you have to convert the user-rpl part)
" Hapaman (you have to convert the Sys-RPL part)
" Jailai (You still have to convert the keys)
" Jezz-Ball (Only works in a library)

Write him an e-mail if you are interested in getting the source of one of these games.

You can also ask Julien Meyer for the sources of Wario-HP and DR-Mario to convert those to the HP-39/40g if
you want.

Interview with NODA.

Interview
Michaël How old are you, and what of education do you have?

NODA

Hello, hello! I’m 19 years old and after my bac (note editor: ending exam in France) it was
a little bit of a mess. Not taking lessons for my audiovisual BTS, I went to the fac. I
stayed there for one month (because it was a withdrawal for me), and after that I went
finally to Cannes to make my audiovisual BTS. I stopped three months later because of
my girlfriend who was at Grenoble (and who left me a week after), after that I tried to
retake the fac, but it started working a little bit on my nerves so I ended by doing a half-
year nothing.

Michaël Where do you live?

NODA I live in France at Grenoble (Echirolles to be precise)

Michaël What calculators do you own?

NODA A HP-40g and… that’s all! I have had a TI-81 on which I made my first text-games, but it
was actually my sisters’ and in the end she wanted it back.

Michaël What was the first program you ever wrote?

NODA
Ola, that goes way back, I don’t remember it anymore! I started programming in Basic
around the age of 6-7 years, because my uncle had given my sister a computer (if you
can call it that), a Thomson TO-8, and because she didn’t understand a thing about it it
was me who helped her out :o)

Michaël What do you use your calculator for the most?

NODA
Well for the moment I almost don’t use it anymore. But back when I was still on school I
used it to calculate everything what the teacher wanted me to do by hand and to keep
the lessons interesting.

Michaël Why did you start programming calculators and how did you learn it?

NODA

Well I already programmed for a time in basic on our TO-8, and in qbasic when we got
our first computer (an unbelievable 386sx ☺). From the moment I got in college and
when my sister passed her TI-81 to me, I saw that you could program it too, so inevitably
I decided to learn programming for the TI-81. I have learned everything by myself by
reading books and sources, by testing programs and re-testing programs…

Michaël If you have any advice for beginning Sys-rpl and Assembly programmers, what would it
be?

NODA

What ever you do don’t get discouraged. When I started programming on the HP-40g,
nobody knew anything about this new calculator which just came out. I have tested a lot
of instructions, one for one, to know what they did and to see how they worked in the
beginning. Yes, that was hard work but with perseverance I got there. Assembly is a
language that scares you in the beginning (one says that it’s crypted when you read a
source) and when I started converting games, I almost didn’t know anything. Lilian told
me briefly how I should do it, so I tested what he said by compiling all the games for the
HP-48 which I could find and looked if it worked. Little by little I started to understand
how it worked, without doing much effort. And today I know how to code in ASM (I
secretly made a doom-like game, but as many of my projects I didn’t find time to finish
it). The only bad thing is that it takes time to learn. Don’t start with to ambitious projects,
you have to start smoothly and then everything will slip in place.

Michaël Are there any programmes you want to see on your calculator?

NODA
The grey-scale mario and the grey-scale Bomberman from the HP-48. I’ve tried to convert
them for a long time, but the first one is impossible without having the source and the
second uses to much routines and calls in the un-supported area of the HP-48g which
makes the conversion a whole lot harder.

Michaël What do you see for the future of HP?

NODA Well when there are enough motivated users, there is a future for HP!! And with the new
HP-49g+, there are enough new programmers that are going to start programming.

Michaël’s cosy programmers’ corner.
Hi this month we will learn everything about lists. Let’s start right away:

Make an aplet with the name ‘Lists’ and the same file name in WSR 1.1b. Let’s begin with making two variables
called List1 and List2. Scroll down till the beginning of the program and delete the usual lines. Now write the
code to clear the screen.

You can basically store everything in a list! Ranging from BINTS to strings, you even can store lists inside lists.
Well let’s try to store % 1.1, "Colin" and ONE in List1. So write under HARDBUFF ZEROZERO
BINT_131d SIXTYFOUR GROB!ZERODRP: { % 1.1 "Colin" ONE } List1!. Now let us try to
store a list inside a list. Write under the previous code { { %0 %0 } { %1 % 2.1234568 } } List2!
It’s isn’t that hard: open a list with ‘{’ put spaces between different elements and quit the list with ‘}’. You’re
code should be:

Now that we have stored something in List1 and List2 we are going to display the content of those lists on the
screen. So take the values out of those lists (it’s the same as taking a value out of variable). Make strings from
them and display them on row 1 and row2. You’re code should look like this (ignore the comment):

Compile your aplet. Transfer it to your HP-39/40g and run it. Notice that the BINT in our first list is displayed as
UNKNOWN.

Be able to make lists is a nice thing doing something useful with them is another. E.G.: let’s say we want to have
the second value of the first list (Colin). We use NTHCOMPDROP. NTHCOMPDROP is a one word command for
NTHELCOMP DROP. NTHELCOMP needs two arguments namely a list and a BINT. It checks if the BINT isn’t
bigger than there are elements in the list and puts FALSE (if the BINT wasn’t bigger) or TRUE (if the BINT was
bigger) on the stack. Then if the case was FALSE it’s puts the object on the stack that was on the place specified
by the BINT. Since I’m not interested in getting TRUE or FALSE I use NTHELCOMP DROP. But because
NTHCOMPDROP is a little bit smaller in size I use that instead. We want to display Colin on row 3 till a key is
pressed. Colin is the second object of list 1. So we need List1@ and TWO as arguments. So write List1@
TWO NTHCOMPDROP. Now display it on row 3 (remember Colin is already a string) and add a waitforkey. Your
code should look like this:

HARDBUFF ZEROZERO BINT_131d SIXTYFOUR GROB!ZERODRP

{ % 1.1 "Colin" ONE } List1!
{ { %0 %0 } { %1 % 2.1234568 } } List2!

HARDBUFF ZEROZERO BINT_131d SIXTYFOUR GROB!ZERODRP

{ % 1.1 "Colin" ONE } List1!
{ { %0 %0 } { %1 % 2.1234568 } } List2!

List1@ DO>STR
DISPROW1
* Notice that the bint is displayed as UNKNOWN
List2@ DO>STR
DISPROW3
WaitForKey

List1@ TWO NTHCOMPDROP
DISPROW3

WaitForKey

So that works. What I want to do now is replace the % 1.1 in list 1 with a string hello. For that we have the
command PUTLIST. PUTLIST needs three arguments an object, a BINT and a list. It replaces the object that is
on the place defined by the BINT in the list you have defined with the object you have defined. So we write
"Hello" ONE List1@ PUTLIST. Now store the result back in List1. The code should look like this, notice
that I have added code to display the list on row 1.

Let’s store something totally new in List 1. E.g.: { %2 } List1!. Now I want to add a different list to my
List 1. So now I need to use the command &COMP. &COMP needs two arguments a list and a second list. It adds
the second list to the first one. We want to add { %3 % 4.123 } to our list 1. So our first argument is List 1
and our second { %3 % 4.123 }. Write List1@ { %3 % 4.123 } &COMP. Store the result back in List 1.
Your code so far (I added again some code to display the list):

As a last exercise we are going to count how many elements there are in our list. We use the command
LENCOMP for that. It uses only one argument… Guess which… Yes indeed a list. So write List1@ LENCOMP.
The number of elements that are in the list is now put on the stack. But it isn’t a real number, but a BINT. So to
display it we have to make a real number from (and also make a string of it, of course). The code (again I felt
free to add the code to display the number on the screen):

There are more things you can do with lists but that is for another lesson.

DISPROW3
WaitForKey

HARDBUFF ZEROZERO BINT_131d SIXTYFOUR GROB!ZERODRP

"Hello" ONE List1@ PUTLIST List1!
List1@ DO>STR
DISPROW1

{ %2 } List1!

* Let's add a new list to list1 *

List1@ { %3 % 4.123 } &COMP List1!
List1@ DO>STR DISPROW3

WaitForKey

HARDBUFF ZEROZERO BINT_131d SIXTYFOUR GROB!ZERODRP

List1@ LENCOMP
UNCOERCE DO>STR DISPROW1

* If you also want the list to be returned use DUPLENCOMP

