

 Programming the HP series

An extract from a larger text...

 by Colin Croft
 www.hphomeview.com

 Note: This text is extracted from the book "Mastering the hp 39g+: A guide for students
 and teachers", which can be found on the Help page at www.hphomeview.com
 Copyright resides with the author and with Hewlett Packard.

ii nn vv ee nn tt

2

PPRROOGGRRAAMMMMIINNGG TTHHEE HHPP 3399GG++

TThhee ddeessiiggnn pprroocceessss

An overview

Although you can choose to simply create programs which are self sufficient
the whole point of working on the HP is to use aplets. Hence this
chapter will concentrate on the process of creating aplets with enhanced
powers provided by attached �helper� programs.

The key to the entire process of creating completely new aplets is the VIEWS
menu and its controlling command function SETVIEWS. This function allows
you to override the normal behavior of an aplet and superimpose new
properties by linking in a set of programs written by you.

It is mildly deceptive to call these aplets �new�, as they derive from one of the
standard ones, but the modification of the VIEWS menu means that their final
appearance and behavior can be very different to the aplet they derive from.

Essentially the process involves the following stages�

• Choose the parent aplet;
• Analyze the expected behavior and design the VIEWS menu;
• Write the �helper� programs and attach them to the aplet using the
SETVIEWS function;

• Add supporting documentation.

Choosing the parent aplet

The first stage in the creation process is to decide which of the standard
aplets you wish to make the �parent� of your new child aplet. For some
aplets this may not matter, but for others this can be a very important choice.
All the abilities of the parent are inherited by the child so the parent choice is
crucial if your aplet requires particular abilities. The most commonly used
parent aplets are the Function and Statistics aplets, whereas the Quadratic
and Trig Explorers would probably not make good parent aplets, since they
are specialized teaching aplets without the flexibility of the others.

3

If your new aplet is going to be concerned with analyzing data then your best
choice for a parent would probably be the Statistics aplet. On the other hand
if you were planning to write an aplet to teach the behavior of graphs then the
Function or Parametric aplets would obviously be best. All the tools of the
parent are available to the child, so consider carefully what tools you require.

Calculator Tip
When designing aplets you should consider using the ADK
as it makes the process far easier. To use the ADK you
must have the Connectivity Kit and for models before the
HP this means buying a cable. We will begin by
assuming that you have only the calculator and create our
first two aplets entirely on the HP. We will then look
at two more examples using the ADK.

Naming conventions

The process starts by making a copy of the parent aplet and giving it
whatever name you want to use for your new aplet. This copy will form the
core of your new aplet. Decide also what prefix to use for the programs you
will associate with your new aplet. The prefix needs to be recognizably
linked to the name of the aplet, so that the user can know which programs to
delete when they want to clear the programs out after deleting the aplet from
the APLET view after use.

For example, an aplet called �Linear .LINEQ.SV .LINEQ.S
Equations� might have a list of programs: .LINEQ.EN .LINEQ.DIS

The next stage is to plan your VIEWS menu. The VIEWS menu is the
controller of your aplet. It pops up when the user presses the VIEWS key or
at a programming command, and offers a choice of options to the user. Most
of the options in your VIEWS menu will be triggers for �helper� programs you
will write, and when the user chooses an option and presses ENTER, the
appropriate �helper� program will be run by the HP. When the �helper�
program terminates the calculator drops into whatever view you as the
designer choose. For example, a �helper� program might set up axes based
on the data entered and then drop the user into the PLOT view.

4

Planning the VIEWS menu

It is very important to the usefulness of your aplet that you carefully plan the
VIEWS menu to be clear, concise and user-friendly. It is possible to have
sub-menus in the VIEWS menu by having your option call a program which
then pops up another menu of options. This is usually denoted by an placing
an ellipsis (�) following the VIEWS option, such as the one below.

An example of the VIEWS menu from an aplet
is shown right. The aplet is called �Time
Series� and is designed to analyze time series
data.

The parent aplet for �Time Series� was the Statistics aplet. This parent was
chosen because of the need for the statistical tools it contains. For this
particular aplet most of the choices on the VIEWS menu trigger a �helper�
program to analyze the data in some way and
then drop the user back into the NUM view
showing the result. Some of the choices drop
back into the PLOT view to see the data
displayed.

Sometimes choices trigger further menus. For
example the last option of �Graphs�� runs a
program which pops up another menu, shown
right. The reason for this method is generally
simply to avoid overcrowding the main menu.

Another example of an aplet is shown right. It
is called �Tangent Lines� and it draws a
tangent line onto a graph and then lets you
move it around, displaying the gradient as it
does so. This aplet has the Function aplet as
its parent and displays the VIEWS menu
shown right. In this case the menu has far fewer options.

The SETVIEWS command
The SETVIEWS programming command which creates the VIEWS menu
follows a repetitive pattern of listing a menu option, followed by the name of
the program the calculator should run if the user chooses that option,
followed by a code number which tells the calculator in which view to leave
the user once the program finishes.

5

You should therefore also think about what you want the user to be looking at
once the program they have triggered stops running. Do you want them to
be looking at the PLOT view - perhaps the option they chose was to draw a
graph, with the program being there to set appropriate axes; or the NUM view
- perhaps we are analysing data - or should they be looking at the VIEWS
menu again so that they can immediately make another choice?

The syntax for SETVIEWS is as follows�

SETVIEWS �Menu line1�; �Program name�; View_No;
 �Menu line2�; �Program name�; View_No;
 �Menu line3�; �Program name�; View_No: (colon on final entry)

where View_No is:
 0. Home view 11. List Catalog
 1. Plot view 12. Matrix Catalog
 2. Symbolic view 13. Notepad Catalog
 3. Numeric view 14. Program Catalog
 4. Plot Setup 15. Views menu item 1 (Plot-Detail in Func.)
 5. Symbolic Setup 16. Views menu item 2 (Plot-Table in Func.)
 6. Numeric Setup 17. Views menu item 3 (Overlay Plot in Func.)
 7. Views menu 18. Views menu item 4 (Auto Scale in Func.)
 8. Aplet Note view 19. Views menu item 5 (Decimal in Func.)
 9. Aplet Sketch view 20. Views menu item 6 (Integer in Func.)
 10. Aplet Catalog 21. Views menu item 7 (Trig in Func.) etc.

The syntax for SETVIEWS allows any number of these triples.

The convention for the SETVIEWS command is to place it in a program with a
name of .NAME.SV where NAME is whatever name you chose at design
stage. When you run this program it severs the aplet�s link to the normal
VIEWS menu inherited from its parent and replaces it with the new options.

Calculator Tip
If an aplet is created using the ADK then it may not have
this .NAME.SV program. The ADK creates the VIEWS
menu in a different way that doesn�t require it.

6

The linking process performed by the SETVIEWS command (or by the ADK39)
is also important in that it tells the calculator which programs are to be
transmitted with the aplet when it is copied via cable or infra-red link. Only
those programs named in the SETVIEWS command (or linked by the ADK39)
will be transmitted.

Special entries in the SETVIEWS command
In addition to the lines which form the menu for your aplet, there are some
special entries which are treated differently.

i. If you include entries called �Start� or �Reset�, then the �helper�
programs associated with those entries will be run when the user
presses or in the APLET view.

ii. If you include a menu line entry which consists of a single space

character in double quotes, then the entry will not appear in the VIEWS
menu, but the program named in the line will be transmitted with the
aplet. This can be handy if you have a program which is a subroutine.
ie one which is not directly called in the menu but which is called by
another program which is in the menu.
Another example of this is the .NAME.SV program itself. It needs to be
included in the list in this fashion, since we don�t want it to appear on
the VIEWS menu but it is usually kept and transmitted with the aplet.
Strictly this is not necessary since, once it has done its job, it would
normally never need to be run again.

iii. If you include an entry which consists of empty double quotes, then
you can access the commands which appear on the parent aplet�s
normal VIEWS menu which has been replaced by yours. The standard
menu options of Auto Scale, Plot-Detail etc. can be included in this
way. View numbers 15 onwards are reserved for this purpose. For
example, if your parent aplet was the Statistics aplet in mode
and you wanted to include its Auto Scale command then you would
use a view number of 18 since Auto Scale is entry number 4 on the
normal VIEWS menu for the Statistics aplet in mode. You need
to be quite careful when using this option since the commands like
Auto Scale appear in different positions for different parents.

Shown below is a SETVIEWS program which illustrates this�

producing a
menu of�

7

The ‘Start’ entry
It is a very good idea to include a �Start� entry, since it will be automatically
run when the user presses and it thus allows you to enter pre-set
values in variables, or to pre-set axes, so that the aplet runs smoothly.
Additionally, if you terminate the �Start� entry with a view number of 7 then as
soon as the user runs the aplet the VIEWS menu will be displayed (it is view
number 7). This makes the aplet more friendly since the controlling menu is
the first thing the user sees. Some aplets tend to opt for first displaying the
Note view because they include instructions there. I usually opt for the VIEWS
menu and include instructions in a separate file.

Example aplet #1

This example will use the SETVIEWS
command to design a very simple (and totally
useless) aplet, which will illustrate a few of the
concepts useful in programming the HP.
We�ll call it the �Message� aplet and create it as
a descendant of the Function aplet.

Change into the APLET view, move the
highlight to the Function aplet and it.
Now save it under the new name of �Message�
and then this new aplet.

You will find that you are looking at the normal
SYMB view but for the Message aplet instead of
the Function aplet.

Press SHIFT PROGRAM to view the Program
Catalog. Press to create a new
program and call it .MSG.SV (see right, with
part of the new program typed in)

Into this empty program, type the following
code, obtaining the quotes from the CHARS
view. When you finish typing, just press SHIFT
PROGRAM again to exit back to the Program
Catalog. There is no need to save as this is
done continuously as you type.

8

Spend a moment to go through the code and ensure that you are clear in
your own mind the menu it will create, the programs it will run, and the views
it will enter after the running of each program. You will be told at a later
stage in this example when to run this program and create the menu.

We�ll now create the associated �helper� programs (shown below). Their
names/titles are supplied above the code for each one.

.MSG.1 .MSG.IN .MSG.2

ERASE clears the screen, ready
to DISP a message on lines 4
and 5 of the screen. The
calculator then FREEZEs waiting
for a key to be pressed.

The MSGBOX command is used
to display the traditional first
message for programmers
learning a new language!

The INPUT command asks the
user for info, displaying a title,
prompt and tip and having a
default value of 20.

.MSG.FN .MSG.S

The command GROB in the
program left, stands for �Graphic
Object� and creates a GROB
from the F1(X) expression stored
in the SYMB view, storing it in
the graphic memory G1, using
the font specified (0, 1, 2 or 3).
The reason for doing it this way
is to use proper mathematical
layout like SHOW does. The

DISPLAY command then
shows it on screen.

The SETVIEWS command is
discussed in detail on the
previous pages.

Having created all of the programs that make up the aplet �Message�, we can
now run the program .MSG.SV, severing the aplet�s link to its current VIEWS
menu which was inherited from its parent the Function aplet, and substituting
this new menu. Before you do this, check that you are still in the correct
aplet. Press the SYMB key and check that the title at the top still says
�MESSAGE SYMBOLIC VIEW�. If it doesn�t show this, then the aplet again to
ensure that it is the active one and so the one whose VIEWS menu will be
changed.

9

Swap back to the Program Catalog, position the highlight on the program
.MSG.SV and the program. Apart from the screen going blank for a
moment nothing will appear to happen, but in fact the link to the normal
VIEWS menu which �Message� inherited from its parent aplet Function has
been severed and a link to the new menu you built in .MSG.SV has been
substituted. Press VIEWS to check.

Providing that you have done everything correctly, this is now the end of the
process - the aplet is now ready to be run. In the APLET view, make sure the
highlight is still on the aplet and press or ENTER to run it. If you get an
error message at any time then you may have to and the
program.

When you do this, the aplet will run the
program .MSG.S which will display a
MSGBOX.

The line in the SETVIEWS command
controlling this was:

 "Start";".MSG.S";7;

Since the triple ends with a view number of 7,
this means that after the program terminates
(when you press), the VIEWS menu will
display again.

If you choose the option �Message 1�, then this
will cause the program .MSG.1 to be run,
displaying the screen on the right. This line in
the SETVIEWS command also terminated with
a view number of 7 so when you press
the VIEWS menu will display again.

The program line for this was:

 MSGBOX "Hello world! 3+4 = "3+4:

Items in quotes are displayed as they appear, while expressions outside
them are evaluated before being displayed. Expressions can include
variables and calls to functions.

10

The next option in the menu is �Input value�. Choosing
this option will create an input screen. The statement
controlling this was:

INPUT N;"MY TITLE";"Please enter N..";"Do as you're told.";20:

Examine the snapshot on the right and notice
the connection between the various parts of
the INPUT statement and their effect. Note the
suggested value of 20, and note also that the
prompt of �Please enter N..� was too long to be
displayed. See the PROMPT command for an
alternative that is simpler but less flexible.

When you enter a number into the input screen and press ENTER, the next
line in .MSG.IN will display this value in a MSGBOX. When you then press

, the view number of 7 specified in the relevant line of .MSG.SV will
cause the VIEWS menu to be displayed again.

Notice that the input window is still displaying in the background. To stop this
happening, you could have included in .MSG.IN a line of ERASE: , which is
a command to erase the display screen. Try editing the program, inserting
this line before the MSGBOX line, and running it again.

The option of �Message 2� displays the same
message as we saw before, but presented in a
different way. The DISP command divides the
display screen up into 7 lines (1 - 7) on which
you can display data.

For example, suppose memory A contained 3.56, then the command:

DISP 3;"The value of A is: "A:

would display the message The value of A is: 3.56 on line 3 of the
display screen.

Notice also that this time when you press ENTER, you end up in the HOME
view rather than in the VIEWS menu again. This is not an error. If you look
at the line in .MSG.SV controlling this option of the menu you will see that its
post execution view number was 0 (HOME) rather than 7 (VIEWS menu) like
most of the others. To see the VIEWS menu again, press VIEWS.

11

The final option is �Show function�. The program this runs is a little more
complex than the ones shown so far and illustrates a useful technique.

The line: '((X+2)^3+4)/(X-2)' F1(X):

stores the expression ()
()

32 4
2

x
x

+ +

−
 into the function F1(X).

Notice the way the function is in single quotes so that the algebraic
expression itself is used rather than its value when evaluated using the
current contents of memory X. If you wanted to graph this function by setting
the post execution view number to 1 (the PLOT view), then you would need to
include the command CHECK 1: in order to it or it would not graph.
You may wish to edit the .MSG.SV and.MSG.FN program to try this.

The next lines display the expression using the four options available.

The line: GROB G1;F1(QUOTE(X));0:
converts the expression F1(X) into a Graphic Object (GROB). The number at
the end, which changes with each repetition, controls the font used to display
the function.

The line: DISPLAY G1:
displays this GROB on the screen, and the FREEZE command freezes the
display until a key is pressed.

Finally the LINE and BOX commands commands are used to draw an oblique
line across the screen and a box near the center. Notice the use of Xmin,
Xmax, Ymin and Ymax in the LINE command. This means that the line
would appear the same even if the screen were to be re-sized in the PLOT
SETUP view. The FREEZE command is needed to ensure that your screen is
visible to the user and not immediately replaced by the next view.

Note that SETVIEWS has a �Start� option and also a final option consisting of
a single space in quotes which is simply to link in the .MSG.SV program so
that it is transmitted with the aplet. It does not appear on the menu.

12

Example aplet #2

In the text from which these pages come, there is an explanation of how to
create a copy of the Parametric aplet to explore geometric transformations
using matrices. We will now look at using programming to enhance this aplet
by automating the process. You don't need to have read the main text to
follow this but it would certainly help.

Start by highlighting the Parametric aplet and
pressing . Now the aplet under
the new name �Transformer�. Press SHIFT
NOTE (not NOTEPAD) and enter some
explanatory text into the aplet�s Note view.
You can use the text shown right.

The next step is to create the �helper�
programs for the aplet, including the one
containing the SETVIEWS command used to
create a new VIEWS menu for the aplet.
These programs are shown on the next page.
When you have typed them all in then
the program .TRANSF.SV to create the VIEWS menu.

Programs for the aplet �Transformer� are given below.

.TRANSF.SV .TRANSF.S .TRANSF.PLOT

This program sets up the VIEWS
menu to call each of the other
programs. It need only be run once
at the creation of the aplet, but is
attached via the final line so that it
will be sent with all the others if the
aplet is transmitted. The new user
does not have to re-run it: it will
never normally be run again.

This program sets up the required
axes using variables from the PLOT
SETUP view. It then loads the
equations and ensures they are

ed and ready for use.
Finally it loads the initial values into
the matrices.

This program changes the value of
Xmin and then changes it back. In
the original version the user had to
press PLOT to force a re-draw. This
technique fools the hp 39g+ into
thinking that the PLOT view has
changed and therefore forces a re-
draw without the need to press a
key. It also re-multiplies the
matrices in case the user has
changed one by hand instead of
going through the VIEWS menu.

13

.TRANSF.SHAPE .TRANSF.MAT

This program (left) uses the
CHOOSE command to offer a list of
options. Note the need to pre-load a
value into C. This value determines
which option is highlighted when the
menu appears. If a list has only
three options but the highlight is set
to some other value than those three
then it can crash the program.
Options 1 and 2 load preset
matrices while option 3 allows the
user to edit their own. Note the
check to ensure the matrix they
entered has a valid size. The
number of columns is then extracted
and used to reset the value of Tmax.
The new image matrix is also
recalculated.
The indenting used is not required
and is there simply to make the
program easier to read.

This program puts up a message
instructing the user and then allows
them to edit the transformation
matrix in M1. The size of the matrix
is checked to ensure it is 2x2, with
the DO�UNTIL loop ensuring that
the user cannot exit without a valid
matrix entered.

Assuming that you have the .TRANSF.SV program to create the new
altered VIEWS menu then you can now test the aplet. Its operation should be
familiar to you if you have read the original explanation in the larger text.

14

In the next example we will use the Aplet Development Kit (ADK39) to re-create
the same �Transformer� aplet used in example 2. This will allow us to
concentrate on how to use the ADK39 rather than the aplet. The ADK39 runs only
on Windows computers and was originally written for Windows 3.1. Because
of this it does not understand long filenames or the Desktop and this makes it
difficult to use at times. It may be that when you read this text new software
will have been released by HP to supercede the ADK39. The behavior of any
successor is likely to be quite similar to that shown below since the basic
design process is fixed by the calculator.

There are two versions of the ADK - one for the hp 38g and one for the later
models. Aplets created by one version are not compatible with the other
 version�s calculator model(s). Look for the ADK on the Utilities page of The HP
HOME view (at http://www.hphomeview.com). Images shown here are from
the older version of the ADK but the only real difference is that the title bar is red
in the newer version
!Example aplet #3

Run the Aplet Development Kit and use the
File - New command to see the box shown
right. Enter �Transformer� and nominate the
parent aplet to be the Parametric aplet in the
box provided.

When you press the �OK� button the aplet
will be created and its Note view will be
displayed. Enter the text below as a hint
to the user on how to use the aplet in
case they don�t have the documentation.

�This aplet will let you investigate geometric
transformations using a 2x2 matrix. Press
VIEWS to see the menu.�

The next stage is to create
the VIEWS menu. From the
View menu, select Special
views… and you will see
the VIEWS menu creation
screen. Press the Insert
button five times to create
the five entries we require
for our menu. You can also
create them one by one as
required.

http://www.hphomeview.com
http://www.hphomeview.com

15

Click on �View 1� in the View List
window. Change the prompt to
�Change matrix�, the Object name to
�.TRANSF.MAT� and the Next View
to �7: Views�.

In the main window, enter the code
for this program (see Example 2).
Special characters such as can be
obtained from the button.

We now must save the code. Click on the �View 2� entry in the View List
window and the ADK will ask if you wish to save the code you entered for the
first view. Tell it �Yes� and a save dialog box will appear. At this point I
usually realize I have forgotten to create a directory to hold my aplet and you
may have too. If so, click on �Cancel�, and create an empty folder to hold the
aplet. Remember that the ADK is a very old program and does not recognize
long filenames. It only accepts names with up to eight characters and no
spaces. This applies to directories also, so if you use �Transformer� for your
directory then you may find it appears in the ADK�s directory view as
TRANSF~1, which is the Windows �short� version.

Save the program under any name. I used EDITMAT.PRG. Make sure you
are in the directory you created before you click on �Save�.

If you click again on the first view in the View
List window you will find that it now records the
filename you used.

At this point you should also save the aplet itself, perhaps as
TRANSFRM.APT.

Using similar methods, enter the code for the
other programs, with two exceptions. Firstly,
the Change Axes option has no program
attached and you should leave the Object
Name blank for that entry, simply specifying
the Next View entry to be the PLOT SETUP view. Secondly, the program we
used before to contain the SETVIEWS command is not required for aplets
created by the ADK. When you finish, close the views planner and use the
File menu to save the aplet also.

16

The final stage is to use the
ADK to create the two
special files HP39DIR.CUR
and HP39DIR.000.

In the File menu, choose
Aplet Library. You will see a
list of the programs and the
aplet in the window labeled
�Other files�.

Click on each file in the right hand bottom window in turn to highlight it and
then on the �Add <=� button to add it to the library files. You can only add
files which are legitimate calculator files. I usually add the aplet file first and
then each of the programs in the order that they appear on the VIEWS menu,
but this has absolutely no effect on the running of the aplet.

When you finish, click on the �Done� button and the files HP39DIR.CUR and
HP39DIR.000 will be created. Exit from the ADK and the aplet is finished
and ready to be transferred.

Example aplet #4

The final example is a very useful aplet called �Linr Explorer�. The name
would be better as �Linear Explorer� but names of more than 14 characters
will not display properly in the APLET view. This will be somewhat similar to
the Quad and Trig Explorer aplets, except that it will explore linear equations.
Its parent is the Function aplet.

Create a directory to hold the aplet and then
run the ADK. Use the File - New command
to create an aplet called �Linr Explorer� with
a parent of the Function aplet.

17

In the Note view, enter the text shown right.

Our VIEWS menu will only have three entries, so
use the View - Custom views… command to
display the menu planner and press �Insert� three
times. Our VIEWS menu will be as shown below.

The first entry should have a
Prompt of �Plot axes�, an Object
Name of �.LINEXPL.AX� and a Next
View of 1 (Plot view). The full code
for each of the programs is given on
the next page, and other settings
are shown below and right.

18

Save the aplet and use the File - Aplet library facility to create the two special
files for the directory which allow the calculator to download it. Finally,
download it to the calculator and test it.

Choose the first option on the VIEWS menu to
plot the axes and then the �Explore� option to
explore the equation of a line. On the pages
following we will examine the code in detail, as
it illustrates many highly important techniques.

Since it is the first program run we will look first at the program .LINEXPL.S.

The variable G is being used here as a flag. Before the �Explore� option can
be used we must be sure that the axes have been plotted, and this will be
done by checking the value of G. Zero will mean �unready� and one will mean
�ready�. When the �Plot axes� option is run the value of G will be set to 1 and
this will be checked before allowing the user to run the �Explore� option. By
setting it to zero in the program which is run when the user presses ,
we ensure that the correct value is going to be in G initially. If this check is not
done then the code used in .LINEXPL.EX will cause the program to crash,
which is obviously not something we want. The axes are also set back to the
default settings in case the user has changed them.

19

The 2nd and 3rd lines are there to insert a
function. We need a function when the axes
are plotted or the normal error message will be
displayed (see right), which is undesirable as it
confuses the user. On the other hand we
need blank axes, so we use a function
�Ymax+1� which is guaranteed to be off-screen
for the entire x axis range no matter what axes are used. Clever, eh?

The next program code we will look at belongs to the 1st option on the VIEWS
menu of �Plot axes�.

A message is first given to the user of how to proceed if they want to use
different axes. The flag value of G is then set to 1 so that the next program
can tell that the axes are ready to use. The function is also re-entered in case
the user has changed the SYMB view. Users have a habit of changing things
so try to allow for this in your programs.

The next program below illustrates a very important technique where a copy
of the PLOT view is stored in the aplet�s sketch view and then retrieved and
modified using the various graphics commands. The program is broken into
parts for discussion purposes.

The reason for the �IF G==0 THEN� is to check that the blank axes have
been plotted and are available for use. If not then the user receives a
message to tell them what to do and the remainder of the program is
bypassed. Trying to capture a PLOT view that doesn�t exist is a major error.

20

Still referring to the code on the previous page, you will see that it refers to
PageNum. The sketches in the HP�s SKETCH view are numbered 1, 2,
3�etc. Sketch number 1 is always present but after that only sketches that
have been created are available and the program will crash if you try to
access one that does not exist. The aplet variable PageNum is the pointer to
the sketch you want and the actual sketch is called Page. Thus the two lines
after ELSE tell the program to store the PLOT view into the first page of the
SKETCH view. The PLOT view must exist before this can be done or the
program will crash. If you run the program and then later change to the
SKETCH view you will be able to see this stored image. Finally, the user is
presented with two messages which tell them what to do.

The next section begins the code which performs the work in the aplet.

The first line assigns initial values to the variables M (gradient) and C (y-
intercept). The DO�UNTIL loop which follows (partly in the next section of
code) loops through the code within it until the ENTER key is pressed.

Within the loop, the previously stored SKETCH view is transferred from
storage to the display using the DISPLAY command. The equation of the
current line is then displayed in the top left corner using the DISPXY
command. Two versions are needed to avoid an expression like �y=2x+ -1�.

The DISPXY command appears in the Prompt section of the MATH menu.

21

The DISPXY command allows you to place a string of text at any position on
the screen using two different fonts. Until this command was added to the
language (after the first HP39G) the only way to do this was to:

- save the current screen into a graphics variable.
- create a special GROB which contained the text.
- superimpose the GROB onto the stored image.
- redisplay the modified image onto the screen.

Quite apart from the fact that this was incredibly involved, it was very slow
and the command to create the GROB was very limited in what it would
allow.

The command has the syntax:

 DISPXY <x-pos>;<y-pos>;<font#>;<object>:

Suppose M=2 & C=3. Then the command
will display the text �y=2x+3� using font #1 (small) at the top (Ymax) left
(Xmin) of the screen.

The next line places a label on the y axis (offset slightly) to mark the y-
intercept. A check is then done to see if an x-intercept exists and, if it does, a
label is placed to mark it. Any labels off the edge of the screen will be
ignored.

Finally the line itself is drawn. Even though part of the line extends off the
screen there is no problem - the excess is clipped.

The next section of code below waits until the user presses a key (GETKEY)
and stores the key�s code into the variable K.

A CASE statement is then used to check for the use of the arrow keys. Notice
the lack of colons (:) after each END in the CASE statement.

22

If the left or right arrows have been pressed (keys 34.1 or 36.1) then the line
is �twisted� by changing the value of M. If the up or down arrows have been
pressed (keys 25.1 or 35.1) then the line is raised or lowered by changing the
value of C. See the manual for more information on the GETKEY and CASE
commands and on key values.

The final check in the line UNTIL K==105.1 END: is to see if the user has
pressed the ENTER key. If so then the loop will terminate and the screen will
erase. If not then the loop begins again with the new line being displayed.
On termination of the program the VIEWS menu will display again, because
we chose this when designing the aplet in the ADK.

This aplet illustrates most of the commonly used programming techniques. If
you would like to gain experience then I suggest that you do as I did -
download aplets and pull them apart to see how they work.

If you would like to further enhance this aplet then try the following:

- change the order of the code so that the labels are drawn after the line,

thus ensuring that the text is never obscured by the line.
- add a new variable D to allow the size of the increment to change. Set an

initial value of D of 0.5 at the same point as the values of M and C. Then
change the lines above so that D is added/subtracted instead of 0.5. Add
two more IFs to the CASE statement so that if they press �+� the
increment doubles, and if �-� then it halves. You will also need to add
another message box line telling them about this. Finally, add a line to
display the current increment size at the top right of the screen using the
DISPXY command.

The explanation so far should help you in understanding the programming
process on the HP. The aplet structure is well designed and, if you take
advantage of the VIEWS menu structure, offers easy creation of complex and
very powerful teaching aplets. Certainly what has been discussed here is
enough that a programmer will be able to make a start without some of the
errors that I made.

233

PPRROOGGRRAAMMMMIINNGG CCOOMMMMAANNDDSS

All programming commands can by typed in by
hand but, as with the MATH commands, can
also be obtained from a menu. Press SHIFT
CMDS to display this.

In this section I will only be covering those commands which I have used
regularly and so regard as important. These may not be the same as the
ones you regard as important. If so, consult the manual.

TThhee AApplleett ccoommmmaannddss

These control aspects of the aplet.

CHECK n, UNCHECK n

These commands put or remove a check next
to the equation whose number is given by n.
An interesting bug is actually quite useful: if
you UNCHECK 0 then all equations are
unchecked instead of only equation 0.
Unfortunately the same is not true for the
CHECK command. As they say in the trade: �It�s not a bug, it�s a feature!�.

SELECT <name>

This is used to set the active aplet if
necessary. If the name has spaces in it then it
must be enclosed in quotes. This is not usually
required as the program will normally be called
by the active aplet anyway. I have only used it
with �stand-alone� programs not attached to an
aplet so that they can temporarily �borrow� abilities belonging to an aplet.
However, it could also be used to create an aplet that had two �parents� if you
required it to inherit abilities from both. You could then swap from one parent
to the other using this command. This could be quite cumbersome but might
add some powerful features.

24

SETVIEWS <prompt>;<program>;<view number>

This absolutely critical command is covered in great detail on page 4.

TThhee BBrraanncchh ccoommmmaannddss

IF <test> THEN <true clause> [ELSE <false clause>] END

Note the need for a double = sign when
comparing equalities. Any number of
statements can be placed in the true and false
sections. Enclosing brackets are not required.

CASE <if clauses> …END:

This command removes the need for nested IF
commands but is only worth it if you have
more than two or three nested IFs. Note that
colons are not required for the ENDs which
terminate the internal IF clauses.

IFFERR <statements> THEN <statements> [ELSE <statements>] END

This can be used to error trap programs where
there is a possibility of something going wrong
which would normally crash the program, such
as evaluating a function at a point for which it
is undefined. By trapping the suspect code
you can supply an alternative which will
perform some other action. This will tend to make your programs more user
friendly and is a very good idea!

25

RUN <program name>

This command runs the program named, with
execution resuming in the calling program
afterwards. If a particular piece of code is used
repeatedly then this can be used to reduce
memory use by placing the code in a separate
program and calling it from different locations.
See the SETVIEWS command for information on how to link a program to an
aplet when it does not appear on the primary menu. Note that if the name
has spaces in it then it must be enclosed in quotes.

STOP

This command can be used to abort execution
of a program. Control resumes in the HOME
view.

TThhee DDrraawwiinngg ccoommmmaannddss

ARC <x-center>;<y-center>;<radius>;<start angle>;<end angle>

This command draws an arc on the
screen. It uses the current values
in the PLOT SETUP view as the
screen coordinates and the
settings in the the MODES view for
angle format. This command is quite slow.

BOX <x1>;<y1>;<x2>;<y2>

This draws a rectangular box on
the screen using (x1,y1) and
(x2,y2) as the corners. The
coordinates are relative to the
settings in the PLOT SETUP view.

26

ERASE

This command erases the current display screen.

FREEZE

This command halts execution until the user presses any key.

LINE <x1>;<y1>;<x2>;<y2>

This draws a line on the screen using (x1,y1) and (x2,y2) as the ends. The
coordinates are relative to the current settings in the PLOT SETUP view.

PIXON <x>;<y> and PIXOFF <x>;<y>

This command turns a pixel point on or off at the specified point. The
coordinates are relative to the current settings in the PLOT SETUP view.

TLINE <x1>;<y1>;<x2>;<y2>

This command is the same as LINE
except that the line drawn reverses the
current set/unset value of all pixels. It
can be used to erase previously drawn lines.
One of the aplets on The HP HOME view (at
http://www.hphomeview.com) is called �Sine
Define� and contains extensive use of this command. It is an incredibly useful
command if you're doing any sort of animation of diagrams because you can
draw new lines to the diagram and then erase them without disturbing the
diagram underlying.

http://www.hphomeview.com
http://www.hphomeview.com

27

TThhee GGrraapphhiiccss ccoommmmaannddss

See page 26 for examples illustrating some of the graphics commands used regularly.

TThhee LLoooopp ccoommmmaannddss

FOR <variable> = <start value> TO
 <end value> [STEP <increment>] <statements> END

This is a standard FOR�NEXT command.
The STEP value is optional and is assumed to
be 1 if not stated. Whatever you do, don�t use
NEXT to terminate the loop! It doesn�t register
as an error but all sort of strange things
happen!

DO <statements> UNTIL <test clause> END

This loop executes the statements within it
until the test clause evaluates as true. It must
execute at least once. The example right
checks for a positive integer from the INPUT
statement. To be even more user friendly you
could let the user know what they had done wrong by adding another few
lines of code within the DO loop of..
 IF INT(N) N OR N 0 THEN
 MSGBOX �Enter a positive integer only�:
 END:

WHILE <test clause> REPEAT <statements> END

This is similar to the DO�UNTIL loop except that the test clause is evaluated
before starting so that the loop may not be executed at all.

28

BREAK

This command will exit from the current loop, resuming execution after the
end of it. There is no GOTO <label> command in the language.

TThhee MMaattrriixx ccoommmmaannddss

EDITMAT <matrix var>

This command pops up a window in which the user can edit or input a matrix
with an key at the bottom. When the user presses , execution
resumes after the EDITMAT statement.

REDIM <matrix var>;<size>

This command is very useful if the size of a
matrix is not known in advance. The user
might be prompted to input the size and then
these values used to resize it. Note that the
dimensions must be supplied as a list variable.
The SIZE command can also be used in this
context as it returns a list variable when used with a matrix.

29

TThhee PPrriinntt ccoommmmaannddss

These commands are supplied for use with the battery operated HP infra-red
thermal printer that was designed for use with the hp 38g.

As far as I am aware you can no longer buy it so they are generally a bit
useless now!

PRDISPLAY

If you place this command in a program then the current display will be sent
to the infra-red printer.

PRHISTORY

This command, whether issued in the HOME view or in a program, will send
the entire contents of the History to the infra-red printer.

PRVAR <variable>

This command, whether issued in the HOME view or in a program, will send
the value of the variable to the infra-red printer. This can be used to capture
and send images of graphs without need for programming as follows:

! set up the graph or image as required
! press ON+PLOT to capture the image and store it in grob G0
! in the HOME view, issue the command PRVAR G0.

30

TThhee PPrroommpptt ccoommmmaannddss

BEEP <frequency>;<duration>

This will use the piezo crystal in the calculator to create a sound of the
specified frequency for the specified duration (in seconds). The resulting
frequency is not terribly accurate, varying by up to 5% from one calculator to
the next and depending also on the temperature. In later models the volume
of this sound was lowered because of complaints
from examiners and teachers.

The frequencies of the twelve semi-tone jumps in
the harmonic scale form a geometric sequence,
and since the ratio from C to C' is 2, the ratio for
each semi-tone must be 212 . The standard
frequency used in tuning instruments is usually
440 cycle/sec for the note A. Since much of the
simple music used by students is written using the
scale of C, I use 440 212 9/ () to find the frequency
of C as 261.6 cycles/sec.

We can use this to form a standard �header� for
any program we want to use to play music. The
header shown right in the rounded box sets up the
scale of C major. The code which then follows plays the first two bars of the
tune �Strangers in the Night�.

In this header, the duration of a note (T) is set to 0.5 seconds. It is easy to
change the tempo of the music by adjusting this. In this case you may find
that the music sounds a little better with T set to 0.55 or 0.6 seconds. T is a
crotchet, T/2 a quaver etc.

CHOOSE <variable>;<title>;<menu option1>;….

This command pops up a menu with
the title specified and with however
many options follow. The number of
the menu option highlighted when the
user presses is returned in the
variable. The initial value of the
variable before the CHOOSE statement
determines which option is initially highlighted.

31

This value must be a valid one. Assigning an initial value outside the range of
the menu may crash the program. If the user presses CANCL then a value
of zero is returned but the program will still continue to execute from that
point unless you include code to terminate it.

DISP <line number>;<expression>

This command breaks the display up
into 7 lines and allows output to them.

Using the DISP command on a line
wipes that entire line to the right hand end of
the screen before display. This means that it is
not possible to use DISP to �edit� material already present. The DISPXY
command should be used for this purpose.

DISPXY <xpos>;<ypos>;;<expression>

This command displays the text/object/result contained in <expression> at
the screen position specified using the font specified. An extensive example
can be found on page 16.

DISPTIME

This command pops up a box displaying the
calculator�s internal time and date. These can
be set by storing values to the variables Time
and Date. Suppose the current time is 3:46:29
pm on the 1st of December, 1998 then you
would store 15.4629 to Time and 12.011998 to Date.

GETKEY <variable>

This pauses the execution until the user presses a key and stores the code
for the key into the variable for later use. See the manual for how the value
of the key changes according to whether it is pressed with or without the
SHIFT or ALPHA keys. A key code of 53.1 would mean row 5, column 3 and
unshifted. It can�t readily be used for games because execution pauses
instead of continuing in the background.

32

INPUT <variable>;<title>;<prompt>;<message>;<default value>

This command puts up an input view
which can be used to obtain responses
from the user. The degree of control
over appearance is quite high as can be
seen in the example.

If you want the default value to be whatever
the user last input then use INPUT N;��..;N instead. If you do this then you
will need to store and initial reasonable value into N before the first use of the
INPUT command.

MSGBOX <expression>

This puts up a box with the
text/expression you specify. If you want
a newline character then just enclose a
pressing of the ENTER key within the
quotes.

PROMPT <variable>

This is a short form of the INPUT
statement for those that don�t require
such precision of control over
appearance. The default value is the
current value of the variable.

WAIT <duration>

This command pauses execution for the specified number of seconds.

Calculator Tip
This list does not cover anywhere near the full range of
commands, but it does cover enough that a competent
programmer will be able to work out the rest
independently. It is also enough that an enthusiastic
amateur will be able to accomplish the more common
tasks required in programming the HP.

	Title Page
	Programming the hp 39g+
	The design process
	An overview
	Choosing the parent aplet
	Naming conventions
	Planning the VIEWS menu
	The SETVIEWS command
	Special entries

	The ‘Start’ entry
	Example aplet #1
	Example aplet #2
	Example aplet #3
	Example aplet #4

	Programming Commands
	Aplet commands
	CHECK, UNCHECK
	SELECT
	SETVIEWS

	Branch commands
	IF THEN [ELSE] END
	CASE END
	IFFERR THEN [ELSE] END
	RUN
	STOP

	Drawing commands
	ARC
	BOX
	ERASE
	FREEZE
	LINE
	PIXON & PIXOFF
	TLINE

	Graphics commands
	Loop commands
	FOR TO [STEP] END
	DO UNTIL END
	WHILE REPEAT END
	BREAK

	Matrix commands
	EDITMAT
	REDIM

	Print commands
	PRDISPLAY
	PRHISTORY
	PRVAR

	Prompt commands
	BEEP
	CHOOSE
	DISP
	DISPXY
	DISPTIME
	GETKEY
	INPUT
	MSGBOX
	PROMPT
	WAIT

